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ME 1401 INTRODUCTION OF FINITE ELEMENT ANALYSIS 

 

Unit – I  Fundamental Concepts 

 

      Syllabus         

Historical background – Matrix approach – Application to the continuum – 

Discretisation – Matrix algebra – Gaussian elimination – Governing equations for 

continuum – Classical Techniques in FEM – Weighted residual method – Ritz 

method 

 

 General Methods of the Finite Element Analysis 

 1. Force Method – Internal forces are considered as the unknowns of the problem. 

 2. Displacement or stiffness method – Displacements of the nodes are considered 

 as the unknowns of the problem. 

 

 General Steps of the Finite Element Analysis 

 Discretization of structure > Numbering of Nodes and Elements > Selection of 

 Displacement function or interpolation function > Define the material behavior by 

 using Strain – Displacement and Stress – Strain relationships > Derivation of 

 element stiffness matrix and equations > Assemble the element equations to 

 obtain the global or total equations > Applying boundary conditions > Solution 

 for the unknown displacements > computation of the element strains and stresses 

 from the nodal displacements > Interpret the results (post processing). 

 

 Boundary Conditions 

 It can be either on displacements or on stresses. The boundary conditions on 

 displacements to prevail at certain points on the boundary of the body, whereas 

 the boundary conditions on stresses require that the stresses induced must be in 

 equilibrium with the external forces applied at certain points on the boundary of 

 the body.   

  

 Consideration During Discretization process 

 Types of element > Size of element > Location of node > Number of elements. 
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 Rayleigh – Ritz Method (Variational Approach) 

 It is useful for solving complex structural problems. This method is possible only 

 if a suitable functional is available. Otherwise, Galerkin’s method of weighted 

 residual is used. 

 

 Problems (I set) 

 1. A simply supported beam subjected to uniformly distributed load over entire 

 span. Determine the bending moment and deflection at midspan by using   

 Rayleigh – Ritz method and compare with exact solutions. 

 2. A bar of uniform cross section is clamed at one end and left free at another end 

 and it is subjected to a uniform axial load P. Calculate the displacement and stress 

 in a bar by using two terms polynomial and three terms polynomial. Compare 

 with exact solutions. 

 

 Weighted Residual method 

 It is a powerful approximate procedure applicable to several problems. For non – 

 structural problems, the method of weighted residuals becomes very useful. It has 

 many types. The popular four methods are, 

1. Point collocation method, 

Residuals are set to zero at n different locations Xi, and the weighting function wi 

is denoted as (x - xi).  

 )( xix   R (x; a1, a2, a3… an) dx = 0 

2. Subdomain collocation method, 

 w1 =  




10

11

forxnotinD

forxinD
 

3. Least square method, 

  [R (x; a1, a2, a3… an)]
2
 dx = minimum. 

 

4. Galerkin’s method.   

 wi = Ni (x) 

  Ni (x) [R (x; a1, a2, a3… an)]
2
 dx = 0,   i = 1, 2, 3, …n. 
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 Problems (II set) 

1. The following differential equation is available for a physical phenomenon. 

2

2

dx

yd + 50 = 0, 0  x 10. Trial function is y = a1x (10-x). Boundary conditions 

are y (0) = 0 and y (10) = 0. Find the value of the parameter a1 by the following 

methods, (1) Point collocation method, (2) Subdomain collocation method, (3) 

Least square method and (4) Galerkin’s method.  

 

2. The differential equation of a physical phenomenon is given by  

2

2

dx

yd
 - 10x

2
 = 5. Obtain two term Galerkin solution b using the trial functions: 

N1(x) = x(x-1); N2(x) = x
2
(x-1); 0  x 1. Boundary conditions are y (0) = 0 and  

y (1) = 0.   

 

 Matrix Algebra 

Equal matrix: Two matrixes are having same order and corresponding elements 

are  equal. 

 Diagonal matrix: Square matrix in which all the elements other than the diagonal 

 are zero. 

 Scalar matrix: Square matrix in which all the elements are equal. 

 Unit matrix: All diagonal elements are unity and other elements are zero. 

 

 Matrix Operation 

 Scalar multiplication, Addition and Subtraction of matrices, Multiplication of 

 matrices, Transpose of a matrix, Determinant of a matrix, inverse of a matrix, 

 Cofactor or Adjoint method to determine the inverse of a matrix, Row reduction 

 method (Gauss Jordan method) to determine the inverse of a matrix, Matrix 

 differentiation and matrix integration. 

 Gaussian Elimination Method 

 It is most commonly used for solving simultaneous linear equations. It is easily 

 adapted to the computer for solving such equations. 
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 Problems (III set) 

1. 3x+y-z = 3, 2x-8y+z = -5, x-2y+9z = 8. Solve by using Gauss – Elimination 

method. 

2. 2a+4b+2c = 15, 2a+b+2c = -5, 4a+b-2c = 0. Solve the equations by using 

Gauss – Elimination method. 

 

 Advantages of Finite Element Method 

1. FEM can handle irregular geometry in a convenient manner. 

2. Handles general load conditions without difficulty 

3. Non – homogeneous materials can be handled easily. 

4. Higher order elements may be implemented. 

 

 Disadvantages of Finite Element Method 

1. It requires a digital computer and fairly extensive  

2. It requires longer execution time compared with FEM. 

3. Output result will vary considerably. 

 

 Applications of Finite Element Analysis 

 Structural Problems: 

1. Stress analysis including truss and frame analysis 

2. Stress concentration problems typically associated with holes, fillets or 

other changes in geometry in a body. 

3. Buckling Analysis: Example: Connecting rod subjected to axial 

compression. 

4. Vibration Analysis: Example: A beam subjected to different types of 

loading. 

 Non - Structural Problems: 

1. Heat Transfer analysis: 

 Example: Steady state thermal analysis on composite cylinder. 

2. Fluid flow analysis: 

 Example: Fluid flow through pipes. 
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Unit – II One Dimension Problems 

 

      Syllabus 

Finite element modeling – Coordinates and shape functions- Potential energy 

approach – Galarkin approach – Assembly of stiffness matrix and load vector – Finite 

element equations – Quadratic shape functions – Applications to plane trusses 

 

 One Dimensional elements 

Bar and beam elements are considered as One Dimensional elements. These 

elements are often used to model trusses and frame structures. 

 

 Bar, Beam and Truss 

Bar is a member which resists only axial loads. A beam can resist axial, lateral 

and twisting loads. A truss is an assemblage of bars with pin joints and a frame is 

an assemblage of beam elements.  

 

 Stress, Strain and Displacement  

Stress is denoted in the form of vector by the variable x as σx, Strain is denoted in 

the form of vector by the variable x as ex, Displacement is denoted in the form of 

vector by the variable x as ux. 

 

 Types of Loading 

(1) Body force (f) 

 It is a distributed force acting on every elemental volume of the body. Unit 

is Force / Unit volume. Ex: Self weight due to gravity. 

(2) Traction (T) 

 It is a distributed force acting on the surface of the body. Unit is  

Force / Unit area. But for one dimensional problem, unit is Force / Unit length. 

Ex: Frictional resistance, viscous drag and Surface shear. 

(3) Point load (P) 

 It is a force acting at a particular point which causes displacement. 
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 Finite Element Modeling 

It has two processes.  

(1) Discretization of structure 

(2) Numbering of nodes. 

 

 
 

 CO – ORDINATES  

(A) Global co – ordinates, (B) Local co – ordinates and (C) Natural co – 

ordinates. 

 

 Natural Co – Ordinate (ε)   

                   ε = 








 

2

12 xx

pc
 

 

 Integration of polynomial terms in natural co – ordinates for two dimensional 

 elements can be performed by using the formula,  

 

     
 

AXdALLL 2
!

!!!
321






  

 

 Shape function 

 N1N2N3 are usually denoted as shape function. In one dimensional problem, the 

 displacement  

  u =  Ni ui =N1 u1 

 For two noded bar element, the displacement at any point within the element is 

 given by,  

  u =  Ni ui =N1 u1 + N2 u2 

 For three noded triangular element, the displacement at any point within the 

 element is given by,  
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u =  Ni ui =N1 u1 + N2 u2 + N3 u3 

v =  Ni vi =N1 v1 + N2 v2 + N3 v3 

 

 Shape function need to satisfy the following 

(a) First derivatives should be finite within an element; (b) Displacement should 

be continuous across the element boundary. 

 

 Polynomial Shape function 

 Polynomials are used as shape function due to the following reasons,  

(1) Differentiation and integration of polynomials are quite easy.  

 (2) It is easy to formulate and computerize the finite element equations. 

 (3) The accuracy of the results can be improved by increasing the order of the 

 polynomial. 

  

 Stiffness Matrix [K] 

  Stiffness Matrix [K] =     dvBDB
T

V

  

 Properties of Stiffness Matrix 

1. It is a symmetric matrix, 2. The sum of elements in any column must be equal 

to zero, 3. It is an unstable element. So the determinant is equal to zero.  

 

 Equation of Stiffness Matrix for One dimensional bar element 

 

                    [K] = 












11

11

l

AE
 

 

 Finite Element Equation for One dimensional bar element 
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 The Load (or) Force Vector {F} 

  

              
 


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 Problem (I set) 

1. A two noded truss element is shown in figure. The nodal displacements are  

u1 = 5 mm and u2 = 8 mm. Calculate the displacement at x = ¼, 1/3 and ½. 

 

 

 Trusses 

 It is made up of several bars, riveted or welded together. The following 

 assumptions are made while finding the forces in a truss, 

 (a) All members are pin joints, (b) The truss is loaded only at the joints, (c) The 

 self – weight of the members is neglected unless stated. 

 

 Stiffness Matrix [K] for a truss element 
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 Finite Element Equation for Two noded Truss  element 

 


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 Problem (II set) 

 1. Consider a three bar truss as shown in figure. It is given that E = 2 x 10
5
 

 N/mm
2
. Calculate (a) Nodal displacement, (b) Stress in each member and                  

 (c) Reactions at the support. Take Area of element 1 = 2000 mm
2
, Area of  

 element 2 = 2500 mm
2
, Area of element 3 = 2500 mm

2
. 

 

 
  

 

 The Galerkin Approach 

Stiffness Matrix 
  














11

11

l

AE
K  

 

 Types of beam 

 1. Cantilever beam, 2. Simply Supported beam, 3. Over hanging beam, 4. Fixed 

beam and 5. Continuous beam. 
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 Types of Transverse Load 

 1. Point or Concentrated Load, 2. Uniformly Distributed Load and 3. Uniformly 

Varying Load. 

 

 Problem (III set) 

1. A fixed beam of length 2L m carries a uniformly distributed load of w (N/m) 

which runs over a length of L m from the fixed end. Calculate the rotation at Point 

B.  
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Unit – III Two Dimension Problems – Scalar variable Problems 

 

 

 

 

 

 

 

 

 Two dimensional elements 

 Two dimensional elements are defined by three or more nodes in a two 

dimensional plane (i.e., x, y plane). The basic element useful for two dimensional 

analysis is the triangular element.  

 
 

 Plane Stress and Plane Strain 

 The 2d element is extremely important for the Plane Stress analysis and Plane 

Strain analysis. 

 Plane Stress Analysis: 

  It is defined to be a state of stress in which the normal stress () and shear 

stress () directed perpendicular to the plane are assumed to be zero. 

 Plane Strain Analysis: 

  It is defined to be a state of strain in which the normal to the xy plane and 

the shear strain are assumed to be zero. 

 

 Finite Element Modeling 

 It consists of 1. Discretization of structure and 2. Numbering of nodes. 

 1. Discretization: 

The art of subdividing a structure into a convenient number of smaller 

components is known as discretization. 

Syllabus 

Finite element modeling – CST & LST elements – Elements equations – Load vectors and 

boundary conditions – Assembly – Applications to scalar variable problems such as torsion, 

heat transfer.  
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 2. Numbering of nodes: 

  In one dimensional problem, each node is allowed to move only in  x 

direction. But in two dimensional problem, each node is permitted to move in the two 

directions i.e., x and y.  

 
 

The element connectivity table for the above domain is explained as table. 

 

Element (e) Nodes 

(1) 123 

(2) 234 

(3) 435 

(4) 536 

(5) 637 

(6) 738 

(7) 839 

(8) 931 

 

 Constant Strain Triangular (CST) Element 

A three noded triangular element is known as constant strain triangular (CST) 

element. It has six unknown displacement degrees of freedom (u1v1, u2v2, u3v3). 
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 Shape function for the CST element 

Shape function N1 = (p1 + q1x + r1y) / 2A 

Shape function N2 = (p2 + q2x + r2y) / 2A 

Shape function N3 = (p3 + q3x + r3y) / 2A 

 

 Displacement function for the CST element 

Displacement function u = 




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 Strain – Displacement matrix [B] for CST element 

Strain – Displacement matrix [B] = 

















332211

321

321

000

000

2

1

qrqrqr
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qqq

A
 

Where, q1 = y2 – y3  r1 = x3 – x2 

 q2 = y3 – y1  r2 = x1 – x3 

 q3 = y1 – y2  r3 = x2 – x1 

 Stress – Strain relationship matrix (or) Constitutive matrix [D] for two 

dimensional element 

[D] = 
   
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 Stress – Strain relationship matrix for two dimensional plane stress problems 

The normal stress z and shear stresses xz, yz are zero. 

[D] = 
















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 Stress – Strain relationship matrix for two dimensional plane strain 

problems 

Normal strain ez and shear strains exz, eyz are zero.  

[D] =    

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 Stiffness matrix equation for two dimensional element (CST element) 

Stiffness matrix [k] = [B]
T
 [D] [B] A t 

[B] = 




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For plane stress problems, 

[D] = 


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For plane strain problems, 
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[D] =    

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 Temperature Effects 

Distribution of the change in temperature (ΔT) is known as strain. Due to the 

change in temperature can be considered as an initial strain e0. 

σ = D (Bu - e0) 

 

 Galerkin Approach 

Stiffness matrix [K]e = [B]
T
 [D][B] A t. 

Force Vector {F}e = [K]e {u} 

 

 Linear Strain Triangular (LST) element 

 A six noded triangular element is known as Linear Strain Triangular (LST) 

element. It has twelve unknown displacement degrees of freedom. The displacement 

functions of the element are quadratic instead of linear as in the CST.  
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 Problem (I set) 

1. Determine the shape functions N1, N2 and N3 at the interior point P for the 

triangular element for the given figure.  

 

 

The two dimensional propped beam shown in figure. It is divided into two CST 

elements. Determine the nodal displacement and element stresses using plane stress 

conditions. Body force is neglected in comparison with the external forces. 

Take, Thickness (t) = 10mm, 

Young’s modulus (E) = 2x10
5
 N/mm

2
, 

Poisson’s ratio (v) = 0.25. 

 

 

3. A thin plate is subjected to surface traction as in figure. Calculate the global 

stiffness matrix.  



 Einstein College of Engineering  
 

 

 

 Scalar variable problems 

In structural problems, displacement at each nodal point is obtained. By using 

these displacement solutions, stresses and strains are calculated for each element. In 

structural problems, the unknowns (displacements) are represented by the 

components of vector field. For example, in a two dimensional plate, the unknown 

quantity is the vector field u(x, y), where u is a (2x1) displacement vector. 

 

 Equation of Temperature function (T) for one dimensional heat conduction 

Temperature (T) = N1T1 + N2T2 

 Equation of Shape functions (N1 & N2) for one dimensional heat conduction 

N1 = 
l

xl 
 

N2 = 
l

x
 

 

 Equation of Stiffness Matrix (K) for one dimensional heat conduction 
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 Finite Element Equations for one dimensional heat conduction 

Case (i): One dimensional heat conduction with free end convection 
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Case (ii): One dimensional element with conduction, convection and internal heat 

generation. 
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 Finite element Equation for Torsional Bar element 
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Where, Stiffness matrix [K] = 

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 Problem (II set) 

1. An Aluminium alloy fin of 7 mm thick and 50 mm long protrudes from a wall, 

which is maintained at 120°C. The ambient air temperature is 22°C. The heat 

transfer coefficient and thermal conductivity of fin material are 140 W/m
2
K and 55 

W/mK respectively. Determine the temperature distribution of fin. 

 

2. Calculate the temperature distribution in a one dimension fin with physical 

properties given in figure. The fin is rectangular in shape and is 120 mm long, 40mm 

wide and 10mm thick. Assume that convection heat loss occurs from the end of the 

fin. Use two elements. Take k = 0.3W/mm°C, h = 1 x 10-3 W/ mm
2
°C, T=20°C. 
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Unit – IV AXISYMMETRIC CONTINUUM 

 

 

 

 

 

 

 Elasticity Equations 

Elasticity equations are used for solving structural mechanics problems. These  

equations must be satisfied if an exact solution to a structural mechanics problem 

is to be obtained. The types of elasticity equations are    

1. Strian – Displacement relationship equations 
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u
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v
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
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v
yz
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




 . 

ex – Strain in X direction, ey – Strain in Y direction. 

xy - Shear Strain in XY plane, xz - Shear Strain in XZ plane, 

yz - Shear Strain in YZ plane 

2. Sterss – Strain relationship equation 
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Syllabus 

Axisymmetric formulation – Element stiffness matrix and force vector – Galarkin approach 

– Body forces and temperature effects – Stress calculations – Boundary conditions – 

Applications to cylinders under internal or external pressures – Rotating discs  
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σ – Stress, τ – Shear Stress, E – Young’s Modulus, v – Poisson’s Ratio,    

e – Strain,   - Shear Strain. 

3. Equilibrium equations 

0
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σ – Stress, τ – Shear Stress, xB - Body force at X direction,                       

yB - Body force at Y direction, zB - Body force at Z direction. 

4. Compatibility equations 

There are six independent compatibility equations, one of which is 

yxx

e

y

e xyyx













 2

2

2

2

2

.  

 The other five equations are similarly second order relations.  

 Axisymmetric Elements 

Most of the three dimensional problems are symmetry about an axis of rotation.  

Those types of problems are solved by a special two dimensional element called 

as axisymmetric element.  
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 Axisymmetric Formulation 

The displacement vector u is given by 
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The stress σ is given by 
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The strain e is given by 
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 Equation of shape function for Axisymmetric element 

Shape function, 

A

zr
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1
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A
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A
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3

 
  

α1 = r2z3 – r3z2;  α2 =r3z1 – r1z3;  α3 = r1z2 – r2z1 

ᵝ1 = z2-z3;   ᵝ2 = z3-z1;   ᵝ3 = z1-z2  

ᵞ1 = r3-r2;   ᵞ2 = r1-r3;   ᵞ3 = r2-r1 

2A = (r2z3 – r3z2)-r1(r3z1 – r1z3)+z1(r1z2 – r2z1) 
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 Equation of Strain – Displacement Matrix [B] for Axisymmetric element 
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 Equation of Stress – Strain Matrix [D] for Axisymmetric element 
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 Equation of Stiffness Matrix [K] for Axisymmetric element 

      BDBrAK
T

 2  

3

321 rrr
r


 ; A = (½) bxh 

 Temperature Effects 

The thermal force vector is given by 

     tt eDBrAf  2  
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 Problem (I set) 

1. For the given element, determine the stiffness matrix. Take E=200GPa and   

υ= 0.25. 

 

2. For the figure, determine the element stresses. Take E=2.1x10
5
N/mm

2
 and           

υ= 0.25. The co – ordinates are in mm. The nodal displacements are u1=0.05mm, 

w1=0.03mm, u2=0.02mm, w2=0.02mm, u3=0.0mm, w3=0.0mm. 

 

3. A long hollow cylinder of inside diameter 100mm and outside diameter   

140mm is subjected to an internal pressure of 4N/mm2. By using two 

elements on the 15mm length, calculate the displacements at the inner radius. 
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UNIT – V ISOPARAMETRIC ELEMENTS FOR TWO DIMENSIONAL      

                  CONTINUUM 

 

 

 

 

 

 Isoparametric element 

Generally it is very difficult to represent the curved boundaries by straight edge 

elements. A large number of elements may be used to obtain reasonable 

resemblance between original body and the assemblage. In order to overcome this 

drawback, isoparametric elements are used. 

 

 

If the number of nodes used for defining the geometry is same as number of nodes 

used defining the displacements, then it is known as isoparametric element. 

 Superparametric element 

If the number of nodes used for defining the geometry is more than number of  

nodes used  for defining the displacements, then it is known as superparametric 

element. 

Syllabus 

The four node quadrilateral – Shape functions – Element stiffness matrix and force 

vector – Numerical integration - Stiffness integration – Stress calculations – Four node 

quadrilateral for axisymmetric problems. 
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 Subparametric element 

If the number of nodes used for defining the geometry is less than number of  

nodes used for defining the displacements, then it is known as subparametric 

element. 
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 Equation of Shape function for 4 noded rectangular parent element 
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N1=1/4(1-Ɛ) (1-ɳ); N2=1/4(1+Ɛ) (1-ɳ); N3=1/4(1+Ɛ) (1+ɳ); N4=1/4(1-Ɛ) (1+ɳ). 

 Equation of Stiffness Matrix for 4 noded isoparametric quadrilateral element 
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, for plane strain conditions. 

 Equation of element force vector 
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; 

N – Shape function, Fx – load or force along x direction,  

Fy – load or force along y direction. 

 

 Numerical Integration (Gaussian Quadrature) 

The Gauss quadrature is one of the numerical integration methods to calculate the 

definite integrals. In FEA, this Gauss quadrature method is mostly preferred. In 

this method the numerical integration is achieved by the following expression, 
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1 1

)()(
n
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ii xfwdxxf  

Table gives gauss points for integration from -1 to 1. 
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Number of 

Points 

n 

Location 

ix  

Corresponding Weights 

iw  

 

1 

 

x1 = 0.000 

 

 

2.000 

 

2 

 

x1, x2 = 895773502691.0
3

1
  

 

 

 

1.000 

 

 

 3 

 

x1, x3 417745966692.0
5

3
  

x2=0.000 

 

 

555555.0
9

5
  

888888.0
9

8
  

 

4 

 

x1, x4= 8611363116.0  

x2, x3= 3399810436.0  

 

 

0.3478548451 

0.6521451549 

 

 Problem (I set) 

1. Evaluate dx
x

I 




1

1
2

cos


, by applying 3 point Gaussian quadrature and  

compare with exact solution. 

2. Evaluate dx
x

xeI x
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1

1

2

2

1
3 , using one point and two point   

Gaussian quadrature. Compare with exact solution.   

3. For the isoparametric quadrilateral element shown in figure, determine the   

local co –ordinates of the point P which has Cartesian co-ordinates (7, 4). 
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4. A four noded rectangular element is in figure. Determine (i) Jacobian   

matrix,   (ii) Strain – Displacement matrix and (iii) Element Stresses. Take 

E=2x10
5
N/mm

2
,υ= 0.25, u=[0,0,0.003,0.004,0.006, 0.004,0,0]

T
, Ɛ= 0, ɳ=0. 

Assume plane stress condition. 

 


